

Brighton \& Hove CPfE

City Partnership for Education

Progression in Calculations June 2016

Re-arranging numbers to use bonds to 10 to help addition

Contents

Introduction 3
Addition 5-13
Subtraction 14-22
Multiplication 23-31Division$32-40$

Introduction

This document has been produced by the City Centre Partnership for Education's numeracy coordinators. It has been created in line with the National Curriculum Mathematics programmes of study for key stages 1 and 2 (DfE, September 2013) and, as such is organised in year groups to match the high expectations for all pupils.

This document has also been informed by materials from the National Centre for Excellence in the Teaching of Mathematics (NCETM) and the Maths Hubs, in particular Calculation Guidance for Primary Schools (NCETM, October 2015) and Teaching for Mastery Years 1 - year 6 (OUP/NCETM, 2015). Schools in the Partnership are strongly advised to make use of these excellent publications which are freely available from NCETM. It is also expected that schools will share the calculation methods and expectations in this document with parents / carers through the revised 2016 'Helping your child with maths' booklet and school workshops.

It should be noted that this document focuses specifically on calculation and does not include all aspects of number as specified in the National Curriculum. Although each of the 4 operations is presented separately in this document, these should not be taught in isolation. Rich connections should be made between the 4 operations and other numerical ideas in order to develop pupils' conceptual and procedural fluency in calculation skills, numerical reasoning and problemsolving.

New strategies for calculation need to be supported by familiar models and images to reinforce understanding: moving between the concrete and abstract helps to develop pupils' understanding. When teaching a new strategy it is important to start with numbers that the child can easily manipulate so that they can understand the concept.

Fluent computational skills depend on accurate and rapid recall of basic number bonds to 20 and times-tables facts. Teaching these basic facts in a way that emphasises patterns and relationships, rather than rote learning, leads to conceptual as well as procedural fluency. Frequent practice of recalling basic number facts will help pupils to commit these to their long term memory.

Written methods of calculation are based on mental strategies. Each of the four operations builds on mental skills which provide the foundation for jottings and informal written methods of recording. These informal written methods are an important stepping stone to help pupils develop fluency with more efficient formal written methods.

> Co-ordinators involved are from : Brighton and Hove CPfE

Acknowledgements: This document has been produced through building on previous documents produced by teachers in Brighton and Hove schools and we are grateful to those involved in the development of these original documents

Progression in Calculation Policy

Mental methods	Written methods	Visual images and models	Vocabulary
Find the total number of items in 2 groups by counting all of them. Say the number that is 1 more than a given number. Find 1 more or 1 less from a group of up to 5 objects then 10 objects. They solve problems by doubling. In practical activities and discussion beginning to use the vocabulary involved in adding. Add two single digit numbers and count on to find the answer.	Informal jottings. Draw pictures to represent an addition problem. Use marks to show meaning Introduce + and = symbols	Counting on from a number to find the total. I have5 cubes in my tin. I put in one, two, three cubes more. How many cubes are in the tin now? Use moveable objects when finding totals. Touch and align each object as it is counted Count first group, start count from first group's total when counting second group How many fingers am I hiding? $4+3=7$	Add, more, plus, make, sum, total, altogether, 1 more, 2 more, How many more to make? How many more is ... than...? How much more is ...? Odd/even Resources Moveable counting objects, numicon, coat hangers and pegs, flip flaps, beads, number tracks and lines, number fans.

Addition: Year 1			
Mental Methods	Written methods	Visual images and models	Vocabulary
Count to and across 100 forwards Be able to quickly use addition facts within 20. Given a number identify 1 more. Add 1 and 2 digit numbers to 20 including zero. Add three 1 digit numbers. Solve simple word problems involving addition. Solve one step problems involving addition using concrete objects, pictorial representations and missing number problems. Count in steps of 2, 5, 10 from any given number, looking at patterns to predict.	Read, interpret and practise writing mathematical statements involving + and = accurately and fluently. $7+3=10$ (recorded with pictures/numicon) $17+3=20$ (recorded with pictures/numicon) Children start to record on a number line: $3+4+7=14 \text { (recorded with pictures/numicon) }$ At the cake sale Year I made 10 cakes, Year 2 made 5, Year 3 made 4. How many cakes did we have?	Understand that addition can be done in any order. Count on from the biggest number. $\begin{aligned} & 13+7=20 \\ & 7+13=20 \end{aligned}$ Re-arranging numbers to use bonds to 10 to help addition How many fingers am I hiding?	Add, more, plus, make, sum, total, altogether, equals, score, double, near double, 1 more, 2 more, 10 more. How many more to make? How many more is ... than...? How much more is ...? Odd/even Resources Moveable counting objects, numicon, coat hangers and pegs, flip flaps, beads, number tracks and lines, number fans.

Addition: Year 4			
Mental	Written	Visual images and models	Vocab
Add any two digit number by partitioning or counting on Ensure pupils practise mental methods with increasingly large numbers. Estimate and unse inverse operations to check answers to a calculation. Solve addition and subtraction 2 step problems in context deciding which operations and methods to use and why. Count backwards through zero to include negative numbers. (Continue to extend understanding of place value in numbers, counting in units, tens and hundreds up to 1000s)	Using the formal column method to add 3 and 4 digit whole numbers and $£$ and p. Children record: Use regrouping (carrying) below the line for the column method. Digits are lined up carefully in columns. $\begin{array}{r} 225 \\ \frac{48}{\frac{273}{1}} \end{array}+\frac{783}{\frac{342}{125}}+\frac{2367}{\frac{3185}{11}}$ Using similar methods, add several numbers. Then extend to different numbers of digits. Children record: $\begin{array}{r} 4 \\ 57 \\ 83 \\ +\quad 256 \\ \hline \frac{400}{22} \end{array}$ Using methods similar to those above, begin to add two or more three digit sums of money, with or without regrouping (carrying) from the pence to the pounds. Know that decimal points should line up under each other (like buttons on a shirt). Children record: $£ 4.21+£ 3.87$ 4.21 $\frac{3.87}{8.08}=£ 8.08$	Adding units first, then 10 s, then 100 s Use base 10/Dienes to help children visualise exchanging units for tens and tens for hundreds:	Add, addition, more, plus, make, sum, total, altogether, score. How many more to make...? How many more is...than..? Units Tens Hundreds Thousands Tens of thousands Tenths Hundredths Difference Exchange Resources: Base 10/Dienes, place value ITP, place value counters, Number lines Arrow cards Straws/objects grouped in tens

Addition: Year 6			
Mental methods	Written methods	Visual images and models	Vocabulary
Perform mental calculations, including ones with mixed operations and large numbers. Add fractions with different denominators and mixed numbers, using the concept of equivalent fractions. Use negative numbers in context and calculate intevals across zero. Solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why	All of the below is consolidating form Y5 apart from fractions work! Use efficient written methods to add integers and decimals. Extend methods to numbers with any numbers of digits. Add whole numbers with more than 4 digits including using formal written methods (column addition) Children record: Note: NC2014 does state in fractions Y5 section: read, write, order and compare numbers up to 3 decimal places AND solve problems involving number up to 3 decimal places	Place the digit cards 3-9 to solve this problem Place value counters:	Add, addition, more, plus, make, sum, total, altogether score How many more to make...? How many more is...than..? Tens Units Hundreds Thousands Ten thousands Tenths Hundredths Thousandths Exchange Resources: Base 10/Dienes, place value ITP, calculators, numicon for decimals, numicon hoods.

Subtraction: Foundation Stage

Mental Methods	Written Methods	Visual images and models	Vocabulary
Use real life problems and songs to take away and find one less. Find one less from a group of five objects then ten objects. In practical activities begin to use the vocabulary involved in subtracting. Using quantities and objects subtract 2 single digit numbers and count back to find the answer. They solve problems by halving.	Informal Jottings Record using marks they can interpret and explain. Use marks to show meaning Introduce - and = symbols.	There were 6 people on the bus. Four people get off. How many are left? There were 4 balloons. 1 popped. How many are left? Use tins and counters e.g. if we had 6 biscuits in a tin and we ate one, how many would be left? Use numicon e.g. You have a five plate of numicon. Find a plate with 1 less. Use washing line and spotty cards e.g. Find a card with one spot and peg it on the line. Find a card with one less spot etc. Use carpet squares or painted number lines to practice jumping back 1 to find 1 less.	Subtraction Take away Minus Count back How many? How many more now? Difference Total Halving Fewer Before After Resources: 100 squares, number games, number lines, numicon and practical resources to support calculation.

Subtraction	Year 1		
Mental methods	Written methods	Visual models and images	Vocabulary
Memorise and reason with number bonds to 20 both as addition and subtraction e.g. $9+7=16 ; 16-7=$ $9 ; 7=16-9$ Count back in ones from any two digit number. Subtract 10 from any two digit number. Use number facts to subtract single digit numbers from two digit numbers e.g. use $7-2$ to work out 27-2 Solve one step problems involving subtraction in familiar practical contexts.	Read, write and interpret mathematical statements involving - and = signs. Using objects, children are able to subtract a single digit number and count back to find the answers. Children record drawings and can explain what they represent: Subtract 1 and 2 digit numbers to 20 Begin to record on a number line. Understanding/experience of finding the difference by comparing 2 lines of objects. Children are introduced to the idea of 'doing' and 'undoing' to demonstrate subtraction as the inverse of addition.	Use fingers to take away and count back Using moveable objects to physically take-away 1 less than 10 is 9 10 subtract 1 equals 9 $10-1=9$ Use bead string $8-3=5$ $\tau_{8-3=5}^{\infty}$ Use large scale number lines to reinforce jumping back	Subtraction Take away Minus, leave, how many are left, left over, gone, fewer, 1 less, 2 less, 10 less, Count back How many? Difference Total Sharing Halving Fewer Resources: 100 squares, number games, number lines Ten frames Bead string Practical resources to support calculation.

Subtraction: Year 2

Subtraction: Year 3

Mental methods	Written methods	Visual images and models	Vocabulary
Count back in steps of $2,3,4,5$, $8,10,50$ and 100 from any given number. Say what is 10 or 100 less than a given number. Derive number facts to 1000 for subtraction. Solve word problems including missing number problems using number facts, place value and addition/ subtraction. Subtract mentally: A 3 digit number and ones A 3 digit number and tens Two 3 digit numbers	Use expanded written method for HTU-HTU leading to formal written method by the end of the year. Use a numberline to partition the smaller number. Use a number line to count up from the smaller number (complementary addition). 783-356 Introduce regrouping (decomposition using exchanging). $\left\lvert\, \begin{array}{cc} 54-27=27 & 754-286= \\ 40 & 1 \\ 50 & 4 \\ 20 & 7 \\ 20 & 7 \end{array}=27 \quad \begin{aligned} & 6001401 \\ & 7500+80+4 \\ & 75-286= \\ & \end{aligned}\right.$	Finding the difference by counting up on a number line. Support with contexts such as difference in height / length etc. 273 225 $=48$	Subtract Take away Minus Halve Borrowing Units Tens Hundreds Difference between How much less than...? How much more is...? How many more make? Resources: 100 squares, number games, number lines, arrow cards, base 10/dienes Place value counters

Subtraction: Year 4			
Mental	Written	Visual images and models	Vocabulary
Subtract numbers mentally including two 2 digit numbers. Estimate, calculate and check answers. Practise mental methods with increasingly large numbers Count back in steps of $2,3,4,5$, $6,7,8,9,10,25$, 50 and 100 and 1000 from any given number Solve word problems including missing number problems using number facts, place value and addition/ subtraction.	Refine and use formal written methods to subtract up to 4 digit whole numbers including $£$ and p. Extend column subtraction to 4 digit numbers, including regrouping and multiple regrouping. Children record: $\begin{array}{r} 5131 \\ 6467 \\ -\quad 2684 \\ \hline 3783 \\ \hline \end{array}$ Extend to decimals. For example: £8.95-£4.38 Know that decimal points should line up under each other (like buttons on a shirt). Children record: $\begin{array}{r} 81 \\ 8.95 \\ 4.38 \\ \hline 4.57 \end{array}$		Subtract Take away Minus Halve Borrowing Units Tens Hundreds Difference between How much less than...? How much more is...? How many more make? Resources: Arrow cards Base ten and place value boards Place value counters Money

Mental	Written	Visual images and models	Vocabulary
Count backwards in steps of 100, 1000 and 10,000 for any given number up to 1 million. Continue to practise fast responses to mental maths questions, for example: $12,462-2300$ Solve word problems including missing number problems using number facts, place value and addition/ subtraction	Subtract whole numbers with more than 4 digits including using formal written methods (column subtraction) Note: some children may be using expanded column subtraction Children record: Subtract numbers with different numbers of digits. For example, find the difference between 671 and 58. Extend column subtraction to 4 digit numbers. Children record: $\begin{array}{r} 5131 \\ 6467 \\ -\quad 2684 \\ \hline 3783 \\ \hline \end{array}$		Decrease Exchange Expanded method Inverse Counting up Estimate Resources: Arrow cards Base ten and place value boards Money

Subtraction: Year 6

Mental	Written	Visual images and models	Vocabulary
Add and subtract negative numbers. To subtract mixed numbers and fractions. Continue to practise fast responses to mental maths questions, for increasingly large numbers. Solve word problems including missing number problems using number facts, place value and addition/ subtraction.	Note: there is nothing new for subtraction in Y6 (apart from fractions!) in NC 2014, so consolidate and apply methods from Y5 Use efficient written methods to subtract integers with 5 and 6 digits and decimals. Children record: $\begin{array}{r} 5131 \\ 2 \not 6467 \\ -12684 \\ \hline 13783 \\ \hline \end{array}$ Using column method, subtract two or more decimal fractions with up to three digits and up to three decimal places. Subtract numbers with different numbers of digits. For example, find the difference between 764 and 5821. Know that decimal points should line up under each other.	Use base 10/Dienes to help children visualise exchanging hundredths for tenths and tenths for units.	Decrease Exchange Expanded method Inverse Counting up Estimate Resources: Arrow cards Base ten and place value boards Money

```
For example :
324.9-7.25 and 14.24-8.7
    Children record:
    1 5 1
*1.60
-9.58
    2.02
```


Fractions

```
Subtract fractions with different denominators and mixed numbers and mixed numbers using the concept of equivalent fractions.
```

Multiplica	S Stage		
Mental methods	Written methods	Visual images and models	Vocabulary
Doubling Making pairs Counting in 2s using numbers up to 20 . Count in 10s up to 100. Count round the circle of children in twos. Who do you think will say 20?	Informal jottings Using marks or pictures to show meaning.	Laying foundations for multiplying by maximising opportunities when counting. Counting in pairs Hop along in twos on a large number track: Number rhymes such as two, four, six, eight Ten fat sausages Doubling Halving Sharing out objects in groups.	Count, double, pairs, groups. Resources Moveable objects, double decker buses and play people, pairs of socks, shoes, gloves, glasses, egg boxes.

Mu			
Mental methods	Written methods	Visual images and models	Vocabulary
Count in 2s, 10s and 5 s . Solve one-step problems involving multiplication using concrete objects, pictorial representations and arrays with the support of the teacher	Begin to explore using x in mathematical statements, calculating the answer with the teacher using concrete objects. Use 'every day' arrays (egg boxes, page of stamps, milk crates, chocolate bars, chocolate boxes, ice cube trays). Children could record hops on a number line. Use a 100 grid to discuss patterns counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	 $5+5+5+5+5+5=30$ $5 \times 6=30$ 5 multiplied by 6 6 groups of 5 6 hops of 5 40, 20, 30, 40, 50" Dropping 2/5 510 loss in 2 box How much money is in the box? How many 2 i 5 i 10 ps are in the boox? if added two more 2 i 5 ; lops what would I have counted to? How many ? i 5 i lops are in the boos altogether? Build cube towers by adding two more each time $5+5+5+5+5+5=30$	Count Double Pairs Groups Resources Moveable objects Numicon Hundred grid Number lines Multilink Coins Dienes Counters Washing line Counting stick Bead strings Pegs on hangers Containers Place value arrow cards

Multiplication: Year 2

Mental	Written	Visual images and models	Vocabulary
Recall multiplication facts for the 2,5 and 10 multiplication tables (up to x12). Count in steps of 2, 3,5 and 10 from zero and in 10 s from any number. Count in halves and quarters to ten. Calculate mathematical statements for multiplication within the multiplication tables. Recognise and use the inverse relationship to check calculations. Recognise and show that multiplication can be done in any order (commutative). Solve word problems involving multiplication.	Write and calculate mathematical statements for multiplication within the multiplication tables. Use x and = signs to read and write mathematical statements. $5 \times 2($ pairs of socks $)=10$ Draw pictures and arrays. Use knowledge that for whole numbers in exact multiples of - 10 the last digit is 0 - 2 the last digit is $0,2,4,6$ or 8 - 5 the last digit is 0 or 5	As an array Use fingers to keep tally of the number of multiples counted. Use physical equipment (e.g. beads in pots) Use function machine. Use numicon to represent multiplication as repeated addition - 5 multiplied by 6, or six lots of five, or six times five	Multiply Multiplied by Multiple of Repeated addition Array Double Pairs Lots of Groups of Times Resources Moveable objects Numicon Hundred grid Number lines Multilink Coins Dienes Counters Washing line Counting stick Bead strings Pegs on hangers Containers Arrow cards

Multiplication: Year 3

Mental methods	Written methods	Visual Images and Models	Vocabulary
To learn 4, 6, 8 \& 9 times tables. To consolidate 2, 3, 5, 10, 11 times tables. Use understanding of place value to multiply whole numbers by 10 or 100. Understand that with positive whole numbers, multiplying makes a number larger. Use knowledge that in exact multiples of - 4 the last two digits are divisible by 4 ; - 6 the number is even and divisible by 3 ; - 8 the last 3 digits are divisible by 8 ; - 9 the sum of the digits is divisible by 9	Use practical and informal methods to multiply. Horizontal $5 \times 3=15$ on a number line. Grid method Children record: $4 \times 12=48$ 4 $$ Multiplication Grid ITP Children should be taught to recognise special case strategies, eg: $\begin{aligned} & \left.\begin{array}{l} 13 \times 9 \\ 13 \times 11 \end{array}\right\} \longrightarrow \text { multiply by } 10 \text { and adjust } \\ & \times 4(\times 2, \times 2) \text { etc..... } \end{aligned}$	Place value cards still used to support partitioning, to ensure the process explicit. Use scaling to support understanding of proportion.	lots of, groups of \square, times, multiply, multiplication, multiplied by multiple of, product once, twice, three times... ten times... times as repeated addition array row, column double, halve share, share equally one each, two each, three each... arrow cards Resources Moveable objects Numicon Hundred grid Number lines Multilink Coins Dienes Counters Washing line Counting stick Bead strings Pegs on hangers Containers Arrow cards Place value sliders

Scale up or down by a factor of 2,5 or 10 .	 Know that brackets determine the order of operations, and that their contents are worked out first. For example: $3+(6 \times 5)=33$, whereas $(3+6) \times 5=45$. Fractions Multiply proper fractions and mixed number by whole numbers supported by materials and diagrams (see page 31 for examples)	multiplication calculations can you work out from $3 \times 4=12$

Multiplication: Year 6

Mental	Written	Visual images and models	Vocabulary
Use understanding of place value to multiply whole numbers and decimals by 10,100 or 1000 giving answers up to 3 decimal places Know by heart the squares of all numbers from 1×1 to 12×12. Derive quickly squares of multiples of 10 to 100, such as $20^{2}, 80^{2}$. Respond rapidly to oral or written questions, explaining the strategy used. For example: - Two nineteens - Double 75 - 11 times 8... 9 multiplied by 8 - Multiply 25 by 8 ... by zero... by 1 - Is 210 a multiple of 6 ? How do you know? - What is the product of 125 and 4? - Find all the different products you can make using two of these: 0.2, $1.4,0.03,1.5,0.5$. Identify common factors, common multiples and primes	Consolidate long and short multiplication Multiply 4 digit numbers by a 2 digit whole number. Multiply a 1 digit number with up to 2 decimal places by whole numbers. $\begin{aligned} & 23.75 \\ & \times 3 \\ & \hline 7^{1} 1^{2} 2^{1} 5 \\ & \hline \end{aligned}$ Understand and use when appropriate the principles of the commutative, associative and distributive laws as they apply	Place value cards still used to support partitioning, to ensure the process is explicit. Work out the 24 times table facts by doubling the 6 times table facts and doubling again. Work out: $\begin{aligned} & 1 \times 32=32 \text { and so deduce that } \\ & 2 \times 32=64 \\ & 4 \times 32=128 \\ & 8 \times 32=256 \\ & 16 \times 32=512 \ldots \end{aligned}$ Use combinations of these facts to work out other multiples of 32. Use knowledge that in exact multiples of: 4 the last two digits are divisible by 4; 6 the number is even and divisible by 3; 8 the last 3 digits are divisible by 8 ; 9 the sum of the digits is divisible by 9 .	lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double, halve, factors, prime, square, square root, composite. Resources Numicon Hundred grid Number lines Multilink Coins Dienes/Base 10 Counters Counting stick Bead strings Containers Arrow cards Place value sliders ITPs

| Mental Calculation
 with decimals
 $0.3 \times 6=?$
 $3 \times 6=18$
 $0.3 \times 6=1.8$ | to multiplication:
 Fractions
 Multiply simple pairs of proper fractions writing the
 answer in it's simple form
 1. Multiply the top numbers (the numerators).
 2. Multiply the bottom numbers (the denominators).
 3. Simplify the fraction if needed. | $\frac{1}{2} \times \frac{2}{5}=\frac{1}{2} \times \frac{2}{2}=\frac{1}{5}$ |
| :--- | :--- | :--- | :--- |

Division: Year 1			
Mental Methods	Written Methods	Visual images and models	Vocabulary
Halve numbers to 20. Know halves of multiples of 10 up to 100. Solve one-step problems using division	Explore sharing and grouping using practical examples Draw pictures to record sharing and dividing.	Solve one-step problems involving division using concrete objects, pictorial representations and arrays with the support of the teacher. When counting in 2 s , 5 s or 10 s , using visual and kinaesthetic resources to model the count, ask: Q: How many 2s / 5s / 10s have we counted? Q: How many more 2s / $5 \mathrm{~s} / 10 \mathrm{~s}$ do we need to count to reach? Match groups of numicon to a given plate. Numberline frog jumping Model how to find find half and quarter of a quantity by sharing into equal groups of 2 and 4	Division Divide Halving Half/Halve Whole Sharing ($1 / 2,1 / 4,3 / 4$) Share Grouping Pairs Left over Resources 100 squares, number games, number lines along side practical resources to support calculation

Division: Year 2

Mental Methods

Recall and use division facts for the 2, 5 and 10
multiplication tables.
Recall the half of all numbers up to 20.

Recall the half of all multiples of 10 up to 100.

Recognise, find and write fractions $1 / 3$, $1 / 4,2 / 4, \& 3 / 4$ of a quantity.

Begin to use knowledge of division as the inverse of multiplication to solve problems ('undoing').

Show that the division of one number by another cannot be done in any order. (unlike multiplication)

Written Methods
Solve problems involving division, using materials, arrays, mental methods and division facts, including problems in contexts.

Informal jottings

Use moveable objects, visual equipment and number line/100 square to support understanding of division.

Children understand division as sharing. I

 have 8 sweets, if I share them equally between the two of you, how many will you have each? One for you... one for you...A bag of sweets, how many children can have 2 sweets each?

Calculate mathematical statements for

 division and use the division and equals signs.Children start to record on a number line.

Children record in drawings.

$$
11 \div 2=5 \mathrm{rl}
$$

Visual images and models
Use fingers to represent different amounts e.g. 2s, 5 s , 10 s

Share 15 between 5 of you, one for you, one for you..

Use number bead strings, number lines, number square, numicon, balance pans.

Model using number lines for grouping.

10 divided
in to equal groups of 2

Use grouping ITP

Vocabulary
Division
Divide
Halving
Halve
Sharing
Share
Pairs
Equal groups
Share equally
Group
Remainder

Resources

100 squares number games, number lines along side practical resources to support calculation ITP

Division: Year 4			
Mental	Written	Visual Images and Models	Vocab
Use understanding of place value to divide whole numbers and decimals by 10 , 100 or 1000	Develop and use written method to record, support and explain division of 2 digit and 3 digit numbers by a 1 digit number including division with remainders e.g. 98 $\div 5$		lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten
Respond quickly to questions like:	Use bus stop method		
	113		times... ten times... times as (big,
- Divide 36 by 4.	$3 \longdiv { 3 3 9 }$		long, wide... and so on), repeated addition, array,
shared between 3?			
- How many fives in 55?		Grouping using parttioning $196-6$ If I know 3×6 then 30×6	row, column, double, halve,
- One quarter of 3.		196	share, shareequally,
		196 18016	
		'Chunking up' on a number line $196 \div 6=32$ r 4	each, three each...
Estimate, Calculate, Check (ECC)			
		$\rightarrow \text { motentit }$	
		Make sensible decisions about rounding up or down after division. For example, $65 \div 7$ is 9 remainder 2 , but whether the answer should be rounded up to 10 or rounded down to 9 depends on the context.	threes... tens equal groups of, divide, division, divided by, divided into, remainder, factor, quotient, divisible by, inverse.

Non-statutory: Interpret remainders in
different ways including as fractions, decimals
or by rounding. (for example, $98 \div 4=498=$
24 r 2 = 24 $21=24.5 \approx 25$).
But ensure children have a secure under-
standing of what they are doing and are able
to use their knowledge of related facts to
either make a rough estimate first or have
an idea about whether their final answer is
reasonable or not.

Division: Year 6			
Mental	Written	Visual images and models	Vocabulary
Divide numbers by 10,100 and 1000 giving answers up to 3 decimal places. Estimate, Calculate, Check (ECC)	Short division: Divide 4 digit numbers by a 2 digit number using the formal written method of short division interpreting remainders according to context Use compact efficient methods to divide integers and decimals by 1 digit integer. Children record: 87.5 $\div 7$ $\begin{array}{r} \frac{12.5}{7 \longdiv { 8 ^ { 1 } 7 . . ^ { 3 } 5 }} \\ 87.43 \div 7 \\ 7 \longdiv { 1 2 . 4 9 } \\ 78^{1} 7.3^{3} 4^{6} 3 \end{array}$ Long division: Divide 4 digit numbers by a 2 digit number using the formal written method of short division interpreting remainders according to context (whole numbers, fractions or by rounding)	Use division to convert simple fractions into decimals ($1 / 2,1 / 4$) $\begin{aligned} & 1 / 2=? \\ & 10 \div 2=5 \\ & 1 \div 2=0.5 \end{aligned}$ Multiply by $1 / 2$ or $1 / 4$ (divide by 2 or 4) - dividing by 2 is the same as halving $1 / 2 \text { of } 18=18 \div 2=\frac{18}{2}$ Taken from 2014 N.C. Maths Appendix 1: $\begin{array}{r} 1866.2 \\ 5 \mid 9^{4} 3^{3} 1 . .^{1} 0 \end{array}$ Short division with decimal remainder.	lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double, halve.

