Vertically opposite angles

1) The diagram shows four angles formed by two straight lines.

a) Measure the sizes of the angles.
\square
\square
\square $d=$ \square
b) What is the total of angles a and b ? \square
Explain why.

Do any other pairs of angles have this same total?
c) Angles a and c are vertically opposite angles.

What do you notice about the sizes of angles a and c ?
d) Angles b and d are also vertically opposite angles.

What do you notice about the sizes of angles b and d ?
e) Complete the sentence.

Vertically opposite angles \qquad
3 Work out the sizes of the unknown angles. Give reasons for your answers.
a)

b)

Annie is working out the size of angle f.

Do you agree with Annie? \qquad
Explain your answer.

5 Work out the unknown angles.
a)

c)

b)
d)

e)

f)

Talk about your reasons with a partner.

Angle b is three times the size of angle a.

Work out the sizes of angles a and b.
\square
\square

7 Angle f is one quarter of the size of angle g.
Angle f is 28°.

Are angles x and y vertically opposite? \qquad
Explain your answer.
\qquad

2 Work out the sizes of the unknown angles.
Give reasons for each stage of your working.
a)

b)
c)

[^0]

Angles in a triangle sum to 180°


```
In an isosceles
triangle, two angles
    are equal
```


Angles on a straight
line sum to 180°
 point sum to 360°

Work out the sizes of the angles marked with letters.
a)

e)

b)

f)

c)

g)

d)

h)

$w=\square$

4 Work out the sizes of the unknown angles
a)

b)

\square
\square
(5)

Work out the size of angle x.

Here is an isosceles triangle.
Find two possible sizes of angle y.

\square
\square

Angles in special quadrilaterals

1) Work out the sum of the angles in each shape.
a)

b)

What do you notice?
(2) The diagrams show the four vertices of a quadrilateral arranged around a point.

What do the diagrams illustrate about the sum of the angles in a quadrilateral?

Complete the sentence.
Angles in a quadrilateral \qquad
a)

\square
b)

\square
b)

$b=$

c) What is the same and what is different about the trapeziums?
(4) Work out the sizes of the unknown angles.
c) What do you notice about opposite angles in a parallelogram?

Two isosceles triangles are joined to form a kite.
a) Work out the sizes of the unknown angles.

\square
\square
\square
b) Work out $w+x$.
c) Work out $y+z$.
\square
What do you notice? Talk about it with a partner.
7) Teddy is drawing a quadrilateral.

Is Teddy's quadrilateral possible? \qquad
Explain your answer.
Compare your reasoning with a partner.

\qquad

Angles in regular polygons

1) The sum of the interior angles of a triangle is 180°.

Split the polygons into triangles to work out the sum of their interior angles. Your lines should not overlap.

The first one has been done for you.
a)

The sum of the interior angles of a pentagon is
b)
 number of sides $=$ \square number of triangles $=$ \square

The sum of the interior angles of a hexagon is \square
c)

The sum of the interior angles of a heptagon is \square
What do you notice about the number of sides compared to the number of triangles?

2 Complete the table.

Shape	Number of sides	Number of triangles	Sum of interior angles
quadrilateral	4	2	360°
pentagon			
nonagon			
decagon			
	6	6	
			$1,800^{\circ}$

Compare answers with a partner.
(3) Dani is working out the sum of the interior angles of a polygon. Here are her workings.

Do you agree with Dani? \qquad
Explain your answer.

Rosie, Amir and Eva are drawing polygons.
a)

Rosie
Each compound shape is made up of regular polygons.
Work out angle y in each case.
a)

c)

d)

b)

b)

What polygon has Amir drawn?
c)

What is the sum of the interior angles of Eva's polygon?
\square

6 The pentagons shown are regular.
Work out the size of angle y in each case.
a)

\square
$y=$
b)

\square

Angle Problems

1.

The diagram shows three identical squares.
Find the size of angle x
Explain your answer.
2. Adam has an equilateral triangle.

He cuts of a corner of the triangle.
Here are the two pieces.

Find the size of the angle marked x

[^0]: Vertically opposite angles are equal

